Answers to Some Questions in Exercises

UNIT 1

1.4	16.23 M	1.5	0.617 m, 0.01 and 0.99, 0.67
1.6	157.8 mL	1.7	33.5%
1.8	17.95 m and 9.10 M	1.9	1.5×10^{-3} %, 1.25×10^{-4} m
1.15	40.907 g mol ⁻¹	1.16	73.58 <i>k</i> Pa
1.17	12.08 <i>k</i> Pa	1.18	10 g
1.19	23 g mol ⁻¹ , 3.53 kPa	1.20	269.07 K
1.21	A = 25.58 u and B = 42.64 u	1.22	0.061 M
1.24	KCl, CH ₃ OH, CH ₃ CN, Cyclohexane		
1.25	Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol		
1.26	5 m	1.27	$2.45 \times 10^{-8} \mathrm{M}$
1.28	1.424%	1.29	3.2 g of water
1.30	4.575 g	1.32	0.65^{0}
1.33	$i = 1.0753, K_a = 3.07 \times 10^{-3}$	1.34	17.44 mm Hg
1.35	178×10 ⁻⁵	1.36	280.7 torr, 32 torr
1.38	0.6 and 0.4	1.39	$x(O_2) 4.6x10^{-5}, x(N_2) 9.22 \times 10^{-5}$
1.40	$0.03 \; \mathrm{mol} \; \mathrm{of} \; \mathrm{CaCl}_2$	1.41	5.27×10^{-3} atm.

UNIT 2

2.4 (i) $E^0 = 0.34$ V, $\Delta_r G^0 = -196.86$ kJ mol⁻¹, $K = 3.124 \times 10^{34}$ (ii) $E^0 = 0.03$ V, $\Delta_r G^0 = -2.895$ kJ mol⁻¹, K = 3.2**2.5** (i) 2.68 V, (ii) 0.53 V, (iii) 0.08 V, (iv) -1.298 V 2.6 1.56 V 124.0 S cm² mol⁻¹ 2.8 $0.219\ cm^{-1}$ 2.9 1.85×10^{-5} 2.11 3F, 2F, 5F 2.12 2.13 1F, 4.44F 2F, 1F 2.14 2.15 1.8258g 2.16 14.40 min, Copper 0.427g, Zinc 0.437 g

UNIT 3

3.2 (i) $8.0 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$; $3.89 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$ 3.4 bar^{-1/2}s⁻¹ 3.6 (i) 4 times (ii) ½ times 3.8 (i) $4.67 \times 10^{-3} \text{ mol } L^{-1}\text{s}^{-1}$ (ii) $1.98 \times 10^{-2} \text{ s}^{-1}$ 3.9 (i) rate = k[A][B]² (ii) 9 times

- **3.10** Orders with respect to A is 1.5 and order with respect to B is zero.
- **3.11** rate law = $k[A][B]^2$; rate constant = 6.0 M^2 min⁻¹
- **3.13** (i) 3.47×10^{-3} seconds (ii) 0.35 minutes (iii) 0.173 years
- **3.14** 1845 years **3.16** 4.6×10^{-2} s
- **3.17** 0.7814 μg and 0.227 μg. **3.19** 77.7 minutes
- **3.20** $2.20 \times 10^{-3} \text{ s}^{-1}$ **3.21** $2.23 \times 10^{-3} \text{ s}^{-1}$, $7.8 \times 10^{-4} \text{ atm s}^{-1}$
- **3.23** $3.9 \times 10^{12} \,\mathrm{s}^{-1}$ **3.24** 0.135 M
- **3.25** 0.158 M **3.26** 232.79 kJ mol⁻¹
- **3.27** 239.339 kJ mol⁻¹ **3.28** 24℃
- **3.29** E_a = $76.750 \text{ kJ mol}^{-1}$, $k = 0.9965 \times 10^{-2} \text{ s}^{-1}$
- **3.30** 52.8 kJ mol⁻¹

UNIT 4

- **4.2** It is because Mn^{2+} has $3d^5$ configuration which has extra stability.
- **4.5** Stable oxidation states.
 - $3d^3$ (Vanadium): (+2), +3, +4, and +5
 - 3d⁵ (Chromium): +3, +4, +6
 - $3d^5$ (Manganese): +2, +4, +6, +7
 - $3d^8$ (Nickel): +2, +3 (in complexes)
 - $3d^4$ There is no d^4 configuration in the ground state.
- **4.6** Vanadate VO_3^- , chromate CrO_4^{2-} , permanganate MnO_4^-
- **4.10** +3 is the common oxidation state of the lanthanoids
 - In addition to +3, oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
- **4.13** In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as +2, +3, +4, +5, +6, +7. In the nontransition elements the variation is selective, always differing by 2, e.g. +2, +4, or +3, +5 or +4, +6 etc.
- **4.18** Except Sc³⁺, all others will be coloured in aqueous solution because of incompletely filled 3*d*-orbitals, will give rise to *d*-*d* transitions.
- **4.21** (i) Cr^{2+} is reducing as it involves change from d^4 to d^3 , the latter is more stable configuration $(t_{2\sigma}^3)$ Mn(III) to Mn(II) is from $3d^4$ to $3d^5$ again $3d^5$ is an extra stable configuration.
 - (ii) Due to CFSE, which more than compensates the 3rd IE.
 - (iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^1 .
- **4.23** Copper, because with +1 oxidation state an extra stable configuration, $3d^{10}$ results.
- **4.24** Unpaired electrons $Mn^{3+} = 4$, $Cr^{3+} = 3$, $V^{3+} = 2$, $Ti^{3+} = 1$. Most stable Cr^{3+}
- **4.28** Second part 59, 95, 102.
- **4.30** Lawrencium, 103, +3
- **4.36** $Ti^{2+} = 2$, $V^{2+} = 3$, $Cr^{3+} = 3$, $Mn^{2+} = 5$, $Fe^{2+} = 6$, $Fe^{3+} = 5$, $CO^{2+} = 7$, $Ni^{2+} = 8$, $Cu^{2+} = 9$
- **4.38** $M\sqrt{n(n+2)} = 2.2$, $n \approx 1$, $d^2 \text{ sp}^3$, CN^- strong ligand
 - = 5.3, $n \approx 4$, sp³, d^2 , H_oO weak ligand
 - = 5.9, $n \approx 5$, sp^3 , Cl^- weak ligand.

UNIT 5

5.5 (i) + 3 (ii) +3

(iii) +2

(iv) +3 (v) +3

5.6 (i) $[Zn(OH)_4]^{2-}$ (ii) $K_{2}[PdCl_{4}]$

(iii) [Pt(NH₃)₂Cl₂]

(iv) $K_2[Ni(CN)_4]$

(v) $[Co(NH_3)_5(ONO)]^{2+}$ (vi) $[Co(NH_3)_6]_2(SO_4)_3$

(vii) $K_3[Cr(C_2O_4)_3]$ (viii) $[Pt(NH_3)_6]^{4+}$

(ix) [CuBr₄]²⁻

(x) $[Co(NH_3)_5(NO_3)]^{2+}$

(i) [Cr(C₂O₄)₃]^{3" -} Nil 5.9

(ii) [Co(NH₃)₃Cl₃] - Two (fac- and mer-)

5.12 Three (two cis and one trans)

5.13 Aqueous $CuSO_4$ solution exists as $[Cu(H_2O)_4]SO_4$ which has blue colour due to $[Cu(H_2O)_4]^{2+}$ ions.

(i) When KF is added, the weak H₂O ligands are replaced by F ligands, forming [CuF₄]^{2"} ions which is a green precipitate.

$$[Cu(H_0O)_4]^{2+} + 4F^- \rightarrow [CuF_4]^{2-} + 4H_0O$$

(ii) When KCl is added, Cl ligands replace the weak H₂O ligands forming [CuCl₄)²⁻ ions which has bright green colour.

$$[\mathrm{Cu}(\mathrm{H_{2}O})_{_{4}}]^{2+} + 4\mathrm{Cl^{-}} \quad \rightarrow \quad [\mathrm{CuCl}_{_{4}}]^{2-} + 4\mathrm{H_{2}O}$$

5.14 $[Cu(H_{0}O)_{a}]^{2+} + 4 CN^{-} \rightarrow [Cu(CN)_{a}]^{2-} + 4H_{0}O$

> As CN is a strong ligand, it forms a highly stable complex with Cu²⁺ ion. On passing H₂S, free Cu²⁺ ions are not available to form the precipitate of CuS.

5.23 (i) OS = +3, CN = 6, d-orbital occupation is t_{2g}^{6} e_g⁰,

(ii) OS = +3, CN = 6,
$$d^3 (t_{2g}^{-3})$$
,

(iii) OS = +2, CN = 4,
$$d^7$$
 ($t_{2g}^5 e_g^2$),

(iv) OS = +2, CN = 6,
$$d^5 (t_{2\sigma}^3 e_{\sigma}^2)$$
.

5.29 (ii)

5.30 (iii)

5.31

5.32 (i) The order of the ligand in the spectrochemical series:

$$H_2O < NH_3 < NO_2$$

Hence the energy of the observed light will be in the order:

$$[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$$

Thus, wavelengths absorbed (E = hc/λ) will be in the opposite order.

